Regular semi-groups whose idempotents satisfy permutation identities
نویسندگان
چکیده
منابع مشابه
Disjunctive Identities of Finite Groups and Identities of Regular Representations
The problem of describing identities of concrete algebraic structures is traditionally one of the most attractive in variety theory. Very often it is a difficult problem, and many deep works are entirely devoted to finding bases of identities of classical algebraic objects. This paper was initiated by attempts to find bases of identities for certain representations of finite groups. Let F be th...
متن کاملPermutation Groups and Transformation Semi- Groups: Results and Problems
J.M. Howie, the influential St Andrews semigroupist, claimed that we value an area of pure mathematics to the extent that (a) it gives rise to arguments that are deep and elegant, and (b) it has interesting interconnections with other parts of pure mathematics. This paper surveys some recent results on the transformation semigroup generated by a permutation group G and a single non-permutation ...
متن کاملExtensions and Covers for Semigroups Whose Idempotents Form a Left Regular Band
Proper extensions that are “injective on L-related idempotents” of R-unipotent semigroups, and much more generally of the class of generalised left restriction semigroups possessing the ample and congruence conditions, referred to here as glrac semigroups, are described as certain subalgebras of a λ-semidirect product of a left regular band by an R-unipotent or by a glrac semigroup, respectivel...
متن کاملSemigroups whose idempotents form a subsemigroup ∗
We prove that every semigroup S in which the idempotents form a sub-semigroup has an E-unitary cover with the same property. Furthermore, if S is E-dense or orthodox, then its cover can be chosen with the same property. Then we describe the structure of E-unitary dense semigroups. Our results generalize Fountain's results on semigroups in which the idempotents commute, and are analogous to thos...
متن کاملPermutation Representations of the Symmetry Groups of Regular Hyperbolic Tessellations
Higman has questioned which discrete hyperbolic groups [p, q] have representations onto almost all symmetric and alternating groups. We call this property 3tf and show that, except perhaps for finitely many values of/? and q, [p,q] has property JC. It is well known that the modular group F = (x,y\ x = y = 1> has the property that every alternating and symmetric group is a homomorphic image of F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pacific Journal of Mathematics
سال: 1967
ISSN: 0030-8730,0030-8730
DOI: 10.2140/pjm.1967.21.371